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1 Introduction

1.1 What is SCALE-DG?

FE-project provides a library and sample programs for the discontinuous Galerkin methods
(DGM). Furthermore, we provide an atmospheric model with a regional/global dynamical
core based on DGM, SCALE-DG. In FE-Project, we use scalable Computing for Advanced
Library and Environment (SCALE), which is a basic software library of weather and
climate models of the earth and planets intended for widespread use.

The general references of SCALE-DG are Kawai and Tomita (2023, 2025). If SCALE-
DG is used in your studies, please cite two our papers in addition to the reference papers
of SCALE library (Nishizawa et al., 2015; Sato et al., 2015).
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2 Governing equations

Corresponding author : Yuta Kawai

2.1 Coordinate system

To describe the governing equations for both regional and global dynamical cores, a
non-orthogonal curvilinear horizontal coordinate (ξ, η) and a general vertical coordinate ζ
are introduced, following Li et al. (2020). For the horizontal coordinate transformation,
the contravariant form of the metric tensor is represented by Gij

h for i, j = 1, 2. A
three-dimensional metric tensor with the horizontal coordinate transformation is defined
as

Gij =

G11
h G12

h 0
G21

h G22
h 0

0 0 1

 . (2.1)

The horizontal Jacobian is defined as
√
Gh = |Gij

h |−
1
2 . The Christoffel symbol of the second

kind Γi
ml, which means the spatial variation of the basis vector, is represented as

Γi
ml =

1

2
Gim

(
∂Gjm

∂xk
+

∂Gkm

∂xj
+

∂Gjk

∂xm

)
(2.2)

For the vertical coordinate transformation, the metric tensor is defined as G13
v =

∂ζ/∂ξ,G23
v = ∂ζ/∂η and the vertical Jacobian is defined as

√
Gv = ∂z/∂ζ. The verti-

cal velocity in the transformed vertical coordinate can be written using contravariant
components of wind vector (uξ, uη, uζ) as

ũζ ≡ dζ

dt
=

1√
Gv

(
uζ +

√
GvG

13
v uξ +

√
GvG

23
v uη

)
. (2.3)

The final Jacobian composed of horizontal and vertical coordinate transformations can
be represented as

√
G =

√
Gh

√
Gv. Hereafter, to briefly describe the formulations, the

coordinate variables are sometimes expressed using (ξ1, ξ2, ξ3) = (ξ, η, ζ). In addition, the
Einstein summation notation will be applied for repeated indices when representing the
geometric relations.

2.1.1 Horizontal coordinates used in regional model

For horizontal coordinates in our regional model, the horizontal Cartesian coordinates
(x, y) is simply adopted although we will introduce map projections in the near future.
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CHAPTER 2. GOVERNING EQUATIONS 4

Then,

Gij
h =

(
1 0
0 0

)
,

√
Gh = 1, (2.4)

The Christoffel symbol of the second kind Γi
ml is represented as

Γ1
ml = 0, Γ2

ml = 0, Γ3
ml = 0, (2.5)

where m, l = 1, 2, 3.
The components of angular velocity vector included in the Coriolis terms are given as

Ω1 = 0, Ω2 = 0,

Ω3 = f0 + βy. (2.6)

Here, f0 = 2Ω sin θ0, β = 2Ω cos θ0 where ω is the angular velocity of the planet and θ0 is
the reference latitude.

2.1.2 Horizontal coordinates used in global model

For horizontal coordinates in our global model, we adopt an equiangular gnomonic cubed-
sphere projection (Sadourny, 1972; Ronchi et al., 1996) to map a cube onto a sphere.
Compared to a conformal projection (Rančić et al., 1996), we prefer this projection to
generate more uniform grids in high spatial resolutions, although the non-orthogonal
basis need to be treated. In each panel of the cube, a local coordinate using the central
angles (α, β) (∈ [−π/4, π/4]) was introduced and related to the horizontal coordinates
(ξ, η) by ξ = α, η = β. Based on the derivation with the coordinate transformation in
previous studies (e.g., Nair et al., 2005; Ullrich and Jablonowski, 2012b; Li et al., 2020),
the horizontal contravariant metric tensor and the horizontal Jacobian for the equiangular
gnomonic cubed-sphere projection can be written as, respectively,

Gij
c =

δ2

r2(1 +X2)(1 + Y 2)

(
1 + Y 2 XY
XY 1 +X2

)
,

√
Gc =

r2(1 +X2)(1 + Y 2)

δ3
, (2.7)

where X = tanα, Y = tan β, δ =
√
1 +X2 + Y 2, and r is the radial coordinate. The

Christoffel symbol of the second kind Γi
ml is represented as

Γ1
ml =


2XY 2

δ2
−Y (1 + Y 2)

δ2
δS
r

−Y (1 + Y 2)

δ2
0 0

δS
r

0 0

 ,

Γ2
ml =


0

−X(1 +X2)

δ2
0

−X(1 +X2)

δ2
2X2Y

δ2
δS
r

0
δS
r

0

 , (2.8)

Γ3
ml = δS

r(1 +X2)(1 + Y 2)

δ4

−(1 +X2) XY 0
XY −(1 + Y 2) 0
0 0 0

 ,

Detailed formulation of SCALE-DG



CHAPTER 2. GOVERNING EQUATIONS 5

where δS is a switch for shallow atmosphere approximation.
The components of angular velocity vector included in the Coriolis terms are given as

Ω1 = 0, Ω2 = δS
ωδ

r(1 + Y 2)
, Ω3 = ω

Y

δ
, for the equatorial panels,

Ω1 = −δS
sωXδ

r(1 +X2)
, Ω2 = −δS

sωY δ

r(1 + Y 2)
, Ω3 =

sω

δ
, for the polar panels, (2.9)

where ω is the angular velocity of the planet and an index s has a value of 1 and -1 for
the Northern and Southern polar panels, respectively.

2.1.3 Vertical coordinates

To treat the topography, we adopt the traditional terrain-following coordinate (Phillips,
1957; Gal-Chen and Somerville, 1975) as a general vertical coordinate. The vertical
coordinate transformation can be expressed as

ζ = zT
z − h

zT − h
, (2.10)

where z is the height coordinate, zT is the top height of computational domain (we assume
it is a constant value), and h is the surface height. The corresponding Jacobian and metric
tensor can be represented as√

Gv = 1− h

zT
,
√
GvG

13
v =

(
ζ

zT
− 1

)
∂h

∂ξ
,
√

GvG
23
v =

(
ζ

zT
− 1

)
∂h

∂η
, (2.11)

respectively.

2.2 Governing equations for atmospheric dynamical

core

As the governing equations, we adopt the three-dimensional, fully compressible nonhy-
drostatic equations based on the flux form (e.g., Ullrich and Jablonowski, 2012b). The
compact form of the governing equations can be written as

∂q

∂t
+

∂ [f(q) + fSGS(q,∇q)]

∂ξ
+

∂ [g(q) + gSGS(q,∇q)]

∂η
+

∂ [h(q) + hSGS(q,∇q)]

∂ζ

= S(q) + SSGS(q,∇q), (2.12)

Here, q is the solution vector defined as

q =
(√

Gρ′,
√
Gρuξ,

√
Gρuη,

√
Gρuζ ,

√
G(ρθ)′, ρq∗

)T

, (2.13)

where ρ, θ denote the density and potential temperature defined later, respectively. q∗
represents the mass concentration of each material such as water vapor (qv), liquid water
(ql), and solid water (qs). The mass concentrations should be the relation as

qd +
∑

∗=v,l,s

q∗ = 1, (2.14)

Detailed formulation of SCALE-DG



CHAPTER 2. GOVERNING EQUATIONS 6

where qd is the mass concentration of dry air. To accurately treat nearly balanced flows, the
density ρ and pressure p (thus ρθ) are decomposed as q(ξ, η, ζ, t) = qhyd(ξ, η, ζ)+q′(ξ, η, ζ, t),
where qhyd denotes a variable satisfying the hydrostatic balance and q′ denotes the deviation.

In Eq. (2.12), f(q), g(q), and h(q) are inviscid fluxes in the ξ, η, and ζ directions,
respectively. The horizontal inviscid fluxes are represented as

f(q) =



√
Gρuξ

√
G(ρuξuξ +G11

h p′)√
G(ρuηuξ +G21

h p′)√
Gρuζuξ

√
Gρθuξ

√
Gρq∗u

ξ


, g(q) =



√
Gρuη

√
G(ρuξuη +G12

h p′)√
G(ρuηuη +G22

h p′)√
Gρuζuη

√
Gρθuη

√
Gρq∗u

η


, (2.15)

and the vertical inviscid fluxes are represented as

h(q) =



√
Gρũζ

√
G[ρuξũζ + (G13

v G11
h +G23

v G12
h )p′]√

G[ρuηũζ + (G13
v G21

h +G23
v G22

h )p′]√
Gρuζ ũζ +

√
Ghp

′
√
Gρθũζ

√
Gρq∗ũζ


. (2.16)

Furthermore, S(q) in Eq. (2.12) represents the source terms as

S(q) =



√
GSρ,phy√

G(F 1
H + F 1

M + F 1
C) +

√
GSρuξ,phy√

G(F 2
H + F 2

M + F 2
C) +

√
GSρuη phy√

G(Fbuo + F 3
C) +

√
GSρuζ ,phy√

GSρθ,phy√
GSρq∗,phy


, (2.17)

where F i
H for i = 1, 2 are the horizontal pressure gradient terms with hydrostatic balance

and can be expressed as

F i
H = −Gim′

h√
Gv

[
∂(
√
Gvphyd)

∂ξm′ +
∂(Gm′3

v

√
Gvphyd)

∂ξ3

]
. (2.18)

Here, note that m′ = 1, 2. F i
M is the source terms due to the horizontal curvilinear

coordinate as

F i
M = −Γi

ml(ρu
mul +Gmlp′), (2.19)

where m, l take values of 1, 2, 3. F i
C is the the Coriolis terms as

F i
C = −Gimϵjml2Ω

mρul, (2.20)

where ϵjkl is the three rank Levi–Civita tensor and Ωm are the components of angular
velocity vector. Fbuo is the buoyancy term as

Fbuo = −ρ′
(a
r

)2

g, (2.21)

Detailed formulation of SCALE-DG



CHAPTER 2. GOVERNING EQUATIONS 7

where r is the radial coordinate, a is the planetary radius, and g is the standard gravitational
acceleration. In Eq. (2.12), the terms with subscript SGS are associated with a turbulent
model; fSGS(q,∇q), gSGS(q,∇q), and hSGS(q,∇q) are the parameterized eddy fluxes while
SSGS(q,∇q) are the source terms with the curvilinear coordinates. The terms associated
with the turbulent model are detailed in Sect. 4.1. On the other hand, S∗,phys represents
the terms with physical processes such as cloud, radiation, and surface processes.

To consider the moist thermodynamics, we introduce a potential temperature defined
as

θ = T

(
P0

p

)R∗/C∗
p

, (2.22)

where T is the temperature, P0 is a constant pressure. The gas constant R∗ and the
specific heat at constant volume C∗

p are defined as

C∗
p =

∑
∗=d,v,l,s

q∗Cp,∗, R∗ =
∑

∗=d,v,l,s

q∗R∗. (2.23)

To close the equation systems in Eq. (2.12), the pressure p is calculated using

p = P0

(
R∗

P0

ρθ

)C∗
p

C∗
v

, (2.24)

where C∗
v = C∗

p −R∗. In terms of C∗
p and R∗, a diabatic heating contribution Hρθ included

in Sρθ,phys can be written as

Hρθ =
1

C∗
p

(
P0

p

)R∗
C∗
p

Q, (2.25)

where Q is the diabatic heating with the unit J/(m3s).
When the traditional approximation is applied to the governing equations in global

model, δS should be set to zero.

Detailed formulation of SCALE-DG



3 Discretization of dynamics

Corresponding author : Yuta Kawai

3.1 Spatial discretization

We perform the spatial discretization for Eq. (2.12) based on a nodal DGM (e.g., Hesthaven
and Warburton, 2007). The three-dimensional computational domain Ω is divided using
non-overlapping hexahedral elements. To relate the coordinates (ξ1, ξ2, ξ3) with the local
coordinates x̃ ≡ (x̃1, x̃2, x̃3) in a reference element Ωe, we adopted a linear mapping defined
as

x̃i = 2
ξi − ξie
hi
e

, (3.1)

where ξie and hi
e represent the center position and width of the element, respectively, in

the ξi-direction.
Using the tensor-product of one-dimensional Lagrange polynomials

lm(x̃) = lm1(x̃
1)lm2(x̃

2)lm3(x̃
3), (3.2)

a local approximated solution within each element Ωe can be represented as

qe|Ωe(x̃, t) =

p+1∑
m1=1

p+1∑
m2=1

p+1∑
m3=1

Qe
m1,m2,m3

(t) lm1(x̃
1)lm2(x̃

2)lm3(x̃
3), (3.3)

In Eq. (3.3), the coefficients Qe
m1,m2,m3

are the unknown degrees of freedom (DOF) and p
is the polynomial order. In this study, the Legendre–Gauss–Lobatto (LGL) points were
used for interpolation and integration nodes.

Semi-discretized equations

By applying the Galerkin approximation to Eq. (2.12), a strong form of the semi-discretized
equations can be obtained as

D

Dt

∫
Ωe

qe(x̃, t) lm(x̃) JE dx̃ =−
3∑

j=1

∫
Ωe

∂Fj(q
e,G)

∂ξj
lm(x̃) JE dx̃

−
∫
∂Ωe

[
F̂ (qe,G)− F (qe,G)

]
· n lm(x̃) J∂E dS

+

∫
Ωe

[S(qe) + SSGS(q
e,G)] lm(x̃) JE dx̃, (3.4)

8



CHAPTER 3. DISCRETIZATION OF DYNAMICS 9

where (F1,F2,F3) = (f + fSGS, g + gSGS,h + hSGS) is the flux vector tensor, F̂ is the
numerical flux at the element boundary ∂ΩE, and n is the outward unit vector normal
to ∂ΩE; In the volume and surface integrals, JE and J∂E represent the transformation
Jacobian with the general curvilinear coordinates and local coordinates within each element.
Note that, because of the linear mapping in Eq. (3.1), the associated geometric factors such
as JE and J∂E have constant values when the volume and surface integrals are calculated.
For the turbulent model, we need to evaluate the eddy viscous flux tensor and diffusion
flux, which include a few gradient terms with quantities such as χ = (uξ, uη, uζ , θ, qv,l,s),
denoted by G = (∂χ/∂ξ1, ∂χ/∂ξ2, ∂χ/∂ξ3) in Eq. (3.4). The gradient discretization in
the ξj-direction is given by∫

Ωe

ρ Gjlm(x̃) JE dx̃ =

∫
Ωe

[
∂ρeχe

∂ξj
− χe

(
∂ρ

∂ξj

)e]
lm(x̃) JE dx̃

+

∫
∂Ωe

(ρ̂χ− ρeχe)nx̃j · n lm(x̃) J∂E dS, (3.5)

where nx̃j is the unit vector in the x̃j-direction and the density gradient is calculated by∫
Ωe

(
∂ρ

∂ξj

)e

lm(x̃) JE dx̃ =

∫
Ωe

∂ρe

∂ξj
lm(x̃) JE dx̃+

∫
∂Ωe

(ρ̂− ρe)nx̃j · n lm(x̃) J∂E dS.

(3.6)

Numerical flux

For the numerical flux of the inviscid terms, the Rusanov flux (Rusanov, 1961) is used as a
simple choice of the approximated Riemann solvers. Its numerical dissipation is provided
based on the maximum absolute eigenvalue of the Jacobian matrix at the left and right
sides of the element boundary. The Rusanov flux is written as

F̂invis =
1

2

{[
Finvis(q

+) + Finvis(q
−)
]
· n− λmax

[
q+ − q−]} , (3.7)

where λmax is the maximum of the absolute value of eigenvalues of the flux Jacobian in the
direction n, and q− and q+ represent the interior and exterior values at ∂Ωe. Previous
studies (e.g., Li et al., 2020) formulated the Rusanov flux taken into account the horizontal
and vertical coordinate transformations. Based on their works, at the element boundaries
in the horizontal directions (ξ and η), λmax can be represented as

λmax,ξ =
∣∣uξ

∣∣+√
G11

h cs, λmax,η = |uη|+
√

G22
h cs, (3.8)

where cs = [(Cp/Cv)RT ]1/2 is the speed of sound wave. For the vertical direction ζ, λmax

can be represented as

λmax,ζ =
∣∣∣ũζ

∣∣∣+ [
1/
√

Gv +G13
v GX +G23

v GY

]1/2
cs, (3.9)

where GX = G13
v G11

h +G23
v G12

h and GY = G13
v G21

h +G23
v G22

h .
We adopt the central flux as the numerical flux of the gradient G and the SGS fluxes

(fSGS, gSGS,hSGS) with the turbulent model.

Detailed formulation of SCALE-DG



CHAPTER 3. DISCRETIZATION OF DYNAMICS 10

Matrix form of semi-discretized equation

When the same nodes are used for interpolation and integration (i.e., collocation), a matrix
form of Eqs. (3.4) and (3.5) can be obtained as

Dqe

Dt
=−

3∑
j=1

djDx̃jFj(q
e,G)−

6∑
f=1

s∂Ωe,f
L∂Ωe,f

[
F̂ (qe,G)− F (qe,G)

]
· n

+ S(qe) + SSGS(q
e,G), (3.10)

ρ Gj =djDx̃j(ρeχe)− χe

(
∂ρ

∂ξj

)e

+
2∑

f ′=1

s∂Ωe,f ′
L∂Ωe,f ′

(ρ̂χ− ρeχe)nx̃j · n, (3.11)

where Dx̃j represents the differential matrix for the x̃j-direction; L∂Ωe,f
represents the

lifting matrix with the surface integral for the f -th element surface, and L∂Ωe,f ′
represents

the same for the f ′-th element surface in the gradient operator for the x̃j-direction. The
components of these matrices are given as

(Dx̃j)m,m′ = M−1

∫
Ωe

lm
∂lm′

∂x̃j

dx̃, (L∂Ωe,j)m,m′ = M−1

∫
∂Ωe,j

lml
∂Ωe,j

m′ dS, (3.12)

where M denotes the mass matrix and is given by

Mm,m′ =

∫
Ωe

lmlm′ dx̃. (3.13)

The density gradient term is calculated as(
∂ρ

∂ξj

)e

= djDx̃jρe −
2∑

f ′=1

s∂Ωe,f ′
L∂Ωe,f ′

(ρ̂− ρe)nx̃j · n. (3.14)

Note that, in Eqs. (3.10), (3.11), and (3.14), dj = ∂x̃j/∂ξj and s∂Ωe,f ′ = J∂Ωe,f ′
/JE are

constant values in the volume and surface integrals, respectively.

Detailed formulation of SCALE-DG



CHAPTER 3. DISCRETIZATION OF DYNAMICS 11

3.2 Temporal discretization

The semi-discretized equations in Eq. (3.4) can be represented as the following ordinary
differential equation (ODE) system

dq

dt
= S(q,∇q) + F(q,∇q), (3.15)

where S(q,∇q) and F(q,∇q) represent the tendencies with slow and fast contributions,
respectively. This study adopted Runge–Kutta (RK) schemes to solve the ODE system
from t = n∆t to t = (n+ 1)∆t, where ∆t is the time step and n is a natural number. In
this subsection, we describe two approaches for temporal discretization, namely, horizontal
explicit and vertical implicit (HEVI) and horizontal explicit and vertical explicit (HEVE)
approaches.

HEVI approach

If the aspect ratio of horizontal grid spacing to its vertical counterpart is large, it is
impractical to use fully explicit temporal schemes because the vertically propagating sound
waves severely restrict the timestep. A strategy to avoid computational cost in such
case is the HEVI approach. The terms corresponding to vertical dynamics with a fast
time-scale are evaluated using an implicit temporal scheme, while the remaining terms are
evaluated using an explicit temporal scheme. This procedure is regarded as a framework of
implicit-explicit (IMEX) time integration scheme (Bao et al., 2015; Gardner et al., 2018).
General formulation of IMEX RK scheme (e.g., Ascher et al., 1997) with ν stages can be
represented as

q(s) = qn +∆t
s−1∑
s′=1

ass′S(t+ cs′∆t, q(s′)) + ∆t
s∑

s′=1

ãss′F(t+ c̃s′∆t, q(s′)) for s = 1, . . . , ν

qn+1 = qn +∆t
ν∑

s=1

bsS(t+ cs∆t, q(s)) + ∆t
ν∑

s=1

b̃sF(t+ c̃s∆t, q(s)), (3.16)

where ass′ , bs, and cs define the explicit temporal integrator, while ãss′ , b̃s, and c̃s′ define
the implicit temporal integrator; cs =

∑s−1
s′=1 ass′ and c̃s =

∑s−1
s′=1 ãss′ represents time

when slow and fast terms are evaluated, respectively. These coefficients are compactly
represented using “double Butcher tableaux”, as shown in Table A.1. Note that, in the
table of the explicit part, A = {ass′} with ass′ = 0 for s′ ≥ s. On the other hand, for the
implicit part, Ã = {ãss′} with ãss′ = 0 for s′ > s in the case of the diagonally implicit RK
scheme.

The terms associated with vertical mass flux, vertical pressure gradient, vertical flux of
potential temperature, and buoyancy in Eq. (2.12) were treated as fast terms, whereas the
other terms were treated as slow terms.

In SCALE-DG, several implicit and explicit (IMEX) RK schemes in Table 3.1 can be
available. To minimize contaminating the spatial accuracy of high-order DGM by temporal
errors present in low-order HEVI scheme, a third-order scheme proposed by Kennedy
and Carpenter (2003) was adopted in our previous studies (Kawai and Tomita, 2025); it
includes four explicit and three implicit evaluations. The corresponding double Butcher
tableaux are given in Table A.1.

Detailed formulation of SCALE-DG
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Table 3.1: Implicit and Explicit (IMEX) Runge–Kutta schemes available in HEVI temporal
integration. For the number of RK stages, (I,E) represents implicit and explicit parts,
respectively.

Abbrev. Order Num. of stages (I,E) Note Reference
IMEX ARK232 2 (2,3) Giraldo et al. (2013)
IMEX ARK324 3 (3,4) Kennedy and Carpenter (2003)

Table 3.2: Explicit Runge–Kutta schemes available in HEVE temporal integration

Abbrev. Order Num. of stages Note Reference
ERK Euler 1 1 for debug
ERK SSP 2s2o 2 2 SSP Shu and Osher (1988)
ERK SSP 3s3o 3 3 SSP Shu and Osher (1988)
ERK SSP 4s3o 3 4 SSP
ERK SSP 5s3o 2N2* 3 5 SSP Higueras and Roldán (2019)
ERK RK4 4 4 classical RK4
ERK SSP 10s4o 2N 4 10 SSP Ketcheson (2008)

In the implicit part of each stage, the corresponding nonlinear equation system is
solved using Newton’s method. In each iteration, the linearized equation system is solved.
Obtaining accurate solutions of the nonlinear equation system generally requires numerous
iterations. However, this study performed a single iteration in Newton’s method (i.e.,
Rosenbrock approach), significantly reducing the computational cost. Similar approach
has been used in previous studies (Ullrich and Jablonowski, 2012a). In the case of the
collocation approach, because the horizontal dependency between all nodes within an
element vanishes, the vertical implicit evaluation can be parallelly performed at each
horizontal node.

For the case of HEVI, the volume and surface integrations in Eqs. (3.12) and (3.13)
were evaluated using inexact integration with the LGL nodes. Consequently, M and
L∂Ωe,3 became diagonal matrices, which further simplified the matrix structure associated
with the vertical spatial operator.

HEVE approach

When we consider a horizontal grid spacing with O(10 m) such as in LES, the ratio of
horizontal to vertical grid spacing approaches unity. The advantages of HEVI approach
decrease. Thus, it is suitable to adopt a fully explicit temporal approach, referred to as
HEVE approach. In such cases, RK schemes with a strong stability preserving (SSP)
property (Gottlieb et al., 2001) are often used in combination with DGM. In SCALE-DG,
several RK schemes in Table 3.2 can be available. The corresponding Butcher table and
coefficients with Shu-Osher form are shown in Appendix A.1. In our previous studies
(Kawai and Tomita, 2023, 2025), we adopted a ten-stage RK scheme with the fourth-order
accuracy proposed by Ketcheson (2008).

When using the HEVE approach, entries of the matrices in Eqs. (3.12) and (3.13) were
directly calculated following Sect. 3.2 in Hesthaven and Warburton (2007).

Detailed formulation of SCALE-DG
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3.3 Additional stabilization

3.3.1 Modal filtering

For high-order DGM, numerical instability is likely to occur in advection-dominated flows
because the numerical dissipations with the upwind numerical fluxes weaken. Furthermore,
we adopted a collocation approach due to its computational efficiency. One drawback
is that the aliasing errors with evaluations of the nonlinear terms can drive numerical
instability. To suppress this numerical instability, a modal filter was used as an additional
stabilization mechanism. The filter matrix for the three-dimensional problem can be
obtained as

F = V 3DC3DV 3D, (3.17)

where V 3D represents the Vandermode matrix associated with the LGL interpolation nodes
(in Eq. (3.3)) and C3D represents the diagonal cutoff matrix. The entries of C3D are defined
as

C3D
(m1,m2,m3),(m′

1,m
′
2,m

′
3)
= δm1,m′

1
σh
m1

δm2,m′
2
σh
m2

δm3,m′
3
σv
m3

, (3.18)

where σh
i and σv

i represent the decay coefficient for the one-dimensional horizontal and
vertical modes i, respectively. Based on Hesthaven and Warburton (2007), a typical choice
of the coefficient for mode i is provided with an exponential function as

σi =

1 if 0 ≤ i ≤ pc

exp

[
−αm

(
i− pc
p− pc

)pm]
if pc ≤ i ≤ p,

(3.19)

where pc, pm, and αm represent the cutoff parameter, the order of the filter, and the
non-dimensional decay strength, respectively. In this study, pc was considered 0. We
applied the filter F to the solution vector q (in Eq. (2.13)) at the final stage of the RK
scheme with a timestep ∆t. Then, the decay time scale for the highest mode can be
regarded as approximately equal to ∆t/αm. We set the order pm, and decay coefficient
αm such that the strength of filter should ensure numerical stability while being as weak
as possible.

3.3.2 Buoyancy term

The balance between the pressure gradient and buoyancy terms should be carefully treated
in the discrete momentum equation (e.g., Blaise et al., 2016; Orgis et al., 2017). In the
above formulation, because a different discretization space is used between the terms, a
numerical imbalance is possible and may cause spurious oscillations, which can destabilize
the simulations. To avoid this incompatibility, the vertical polynomial order for the density
in the buoyancy term was reduced by one following Blaise et al. (2016).
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4 Physical parameterization

4.1 Turbulence

Corresponding author : Yuta Kawai

4.1.1 Smagorinsky-type model

As a turbulent model, this subsection describes a Smagorinsky–Lilly type model (Smagorin-
sky, 1963; Lilly, 1962) that considered the stratification effect (Brown et al., 1994). As
a spatial filter, the Favre-filtering (Favre, 1983) was used. We do not explicitly denote
the symbol representing the spatial filter because the filtering approach is essentially the
same as that explained in Appendix A of Kawai and Tomita (2023). The difficulties in the
derivation of viscous and diffusion terms are caused by the gradient of vector quantities
and the spatial divergence with the non-orthogonal basis because the manipulations grow
increasingly complex. However, previous studies that utilized tensor analysis help us
provide a systematic derivation (e.g., Ullrich, 2014; Rančić et al., 2017). In the absence of
a vertical coordinate transformation, the parameterized fluxes with the turbulent model
can be represented in the general curvilinear coordinates as

fSGS(q,∇q) =


0

−
√
Gρτ 11

−
√
Gρτ 12

−
√
Gρτ 13

−
√
Gρτ 1∗

 , gSGS(q,∇q) =


0

−
√
Gρτ 21

−
√
Gρτ 22

−
√
Gρτ 23

−
√
Gρτ 2∗

 , (4.1)

hSGS(q,∇q) =


0

−
√
Gρτ 31

−
√
Gρτ 32

−
√
Gρτ 33

−
√
Gρτ 3∗

 , (4.2)

and the source term can be given by

SSGS(q,∇q) =


0

−
√
GΓ1

mlρτ
ml

−
√
GΓ2

mlρτ
ml

−
√
GΓ3

mlρτ
ml

0

 . (4.3)
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In the equations, τ ij is the contravariant components of parameterized eddy viscous flux
tensor (i = 1, 2, 3 and j = 1, 2, 3) and can be written as

τ ij = −2νSGS

(
Sij − Gij

3
D

)
− 2

3
GijKSGS, (4.4)

where Sij is the strain velocity tensor, νSGS is the eddy viscosity, D is the divergence of
the three-dimensional velocity, and KSGS is the SGS kinetic energy. The strain velocity
tensor is represented as

Sij =
1

2

(
Gim

∂uj
,m

∂ξm
+Gjm

∂ui
,m

∂ξm

)
, (4.5)

using the covariant derivative of the contravariant velocity component

ui
,j =

∂ui

∂ξj
+ umΓi

jm. (4.6)

The eddy viscosity is written as

νSGS = Cs∆SGS|S|, (4.7)

where Cs, ∆SGS, and |S| represent the Smagorinsky constant, the filter length, and the
norm of strain tensor defined as

√
2GimGjnSijSmn, respectively. The parameterized eddy

diffusive flux can be written as

τ i∗ = −ν∗
SGSG

ij ∂θ

∂ξj
, (4.8)

where ν∗
SGS is the eddy diffusion coefficient. For further details of the turbulent model,

refer to Sect. 2.2 of Nishizawa et al. (2015).
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A The detail numerics

A.1 Runge–Kutta scheme

This section provides Butcher tables and coefficients with Shu–Osher form of Runge–Kutta
schemes.

16
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Table A.1: Double Butcher table for a third-order IMEX RK scheme proposed by Kennedy
and Carpenter (2003).

cs ass′

0 0 0 0 0
1767732205903
2027836641118

1767732205903
2027836641118

0 0 0
3
5

5535828885825
10492691773637

788022342437
10882634858940

0 0
1 6485989280629

16251701735622
−4246266847089

9704473918619
−10755448449292

10357097424841
0

bs
1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

c̃s ãss′

0 0 0 0 0
1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236

0 0
3
5

2746238789719
10658868560708

- 640167445237
6845629431997

1767732205903
4055673282236

0
1 1471266399579

7840856788654
−4482444167858

7529755066697
1767732205903
11593286722821

1767732205903
4055673282236

b̃s
1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

Table A.2: Butcher table and Shu-Osher form for a third-order fully explicit SSP RK
scheme with three stages

cs ass′

0
1 1
1
2

1
4

1
4

bs
1
6

1
6

2
3

αss′

1
3
4

1
4

1
3

0 2
3

βss′

1
0 1

4

0 0 2
3

Table A.3: Butcher table and Shu-Osher form for a third-order fully explicit SSP RK
scheme with four stages

cs ass′

0
1
2

1
2

1 1
2

1
2

1
2

1
6

1
6

1
6

bs
1
6

1
6

1
6

1
2

αss′

1
0 1
2
3

0 1
3

0 0 0 1

βss′

1
2

0 1
2

0 0 1
6

0 0 0 1
2

Detailed formulation of SCALE-DG
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Table A.4: Shu-Osher form for a third-order and five-stage fully explicit SSP RK scheme
with 2N∗

2 storage

αss′

1
0 1

0.682342861037239 0 0.317657138962761
0 0 0 1

0.045230974482400 0 0 0 0.954769025517600

βss′

0.465388589249323
0 0.465388589249323
0 0 0.124745797313998
0 0 0 0.465388589249323
0 0 0 0 0.154263303748666

Table A.5: Butcher table for a fourth-order fully explicit RK scheme with ten stages
porposed by Ketcheson (2008).

cs ass′

0
1
6

1
6

1
3

1
6

1
6

1
2

1
6

1
6

1
6

2
3

1
6

1
6

1
6

1
6

1
3

1
15

1
15

1
15

1
15

1
15

1
2

1
15

1
15

1
15

1
15

1
15

1
6

2
3

1
15

1
15

1
15

1
15

1
15

1
6

1
6

5
6

1
15

1
15

1
15

1
15

1
15

1
6

1
6

1
6

1 1
15

1
15

1
15

1
15

1
15

1
6

1
6

1
6

1
6

bs
1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

αss′

1
0 1
0 0 1
0 0 0 1
3
5

0 0 0 2
5

0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1

βss′

1
6

0 1
6

0 0 1
6

0 0 0 1
6

0 0 0 0 1
15

0 0 0 0 0 1
6

0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 1
6

0 0 0 0 3
50

0 0 0 0 1
10
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nonhydrostatic multiscale model on the uniform jacobian cubed sphere. Monthly Weather
Review, 145(3):1083 – 1105, 2017. doi: 10.1175/MWR-D-16-0178.1.

Detailed formulation of SCALE-DG



BIBLIOGRAPHY 21

C. Ronchi, R. Iacono, and P.S. Paolucci. The “cubed sphere”: A new method for the
solution of partial differential equations in spherical geometry. Journal of Computational
Physics, 124(1):93–114, 1996. ISSN 0021-9991. doi: 10.1006/jcph.1996.0047.

Vladimirovich V. Rusanov. Calculation of Interaction of Non-Steady Shock Waves with
Obstacles. Journal of Computational and Mathematical Physics USSR, 1:267, 1961. doi:
10.1016/0041-5553(62)90062-9.

Robert Sadourny. Conservative Finite-Difference Approximations of the Primitive Equa-
tions on Quasi-Uniform Spherical Grids. Monthly Weather Review, 100(2):136 – 144,
1972. doi: 10.1175/1520-0493(1972)100⟨0136:CFAOTP⟩2.3.CO;2.

Yousuke Sato, Seiya Nishizawa, Hisashi Yashiro, Yoshiaki Miyamoto, Yoshiyuki Kajikawa,
and Hirofumi Tomita. Impacts of cloud microphysics on trade wind cumulus: which
cloud microphysics processes contribute to the diversity in a large eddy simulation?
Progress in Earth and Planetary Science, 2(1):23, 2015.

Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially non-oscillatory
shock-capturing schemes. Journal of Computational Physics, 77(2):439–471, 1988. ISSN
0021-9991. doi: https://doi.org/10.1016/0021-9991(88)90177-5.

Joseph Smagorinsky. General circulation experiments with the primitive equations: I.
the basic experiment. Monthly Weather Review, 91(3):99–164, 1963. doi: 10.1175/
1520-0493(1963)091⟨0099:GCEWTP⟩2.3.CO;2.

P. A. Ullrich. A global finite-element shallow-water model supporting continuous and
discontinuous elements. Geoscientific Model Development, 7(6):3017–3035, 12 2014. doi:
10.5194/gmd-7-3017-2014.

Paul Ullrich and Christiane Jablonowski. Operator-split runge–kutta–rosenbrock methods
for nonhydrostatic atmospheric models. Monthly Weather Review, 140(4):1257 – 1284,
2012a. doi: 10.1175/MWR-D-10-05073.1.

Paul A. Ullrich and Christiane Jablonowski. Mcore: A non-hydrostatic atmospheric
dynamical core utilizing high-order finite-volume methods. Journal of Computational
Physics, 231(15):5078 – 5108, 2012b. ISSN 0021-9991. doi: 10.1016/j.jcp.2012.04.024.

Detailed formulation of SCALE-DG


	Introduction
	What is SCALE-DG?

	Governing equations
	Coordinate system
	Horizontal coordinates used in regional model
	Horizontal coordinates used in global model
	Vertical coordinates

	Governing equations for atmospheric dynamical core

	Discretization of dynamics
	Spatial discretization
	Temporal discretization
	Additional stabilization
	Modal filtering
	Buoyancy term


	Physical parameterization
	Turbulence
	Smagorinsky-type model


	The detail numerics
	Runge–Kutta scheme


