33 procedure :: final => lineelement_final
34 procedure :: genintgausslegendreintrpmat => lineelement_gen_intgausslegendreintrpmat
46 integer,
intent(in) :: elemOrder
47 logical,
intent(in) :: LumpedMassMatFlag
51 elem%PolyOrder = elemorder
53 elem%Np = elemorder + 1
56 elem%NfpTot = elem%Nfp*elem%Nfaces
59 call construct_element(elem)
65 subroutine lineelement_final(elem)
74 end subroutine lineelement_final
77 subroutine construct_element(elem)
92 integer :: nodes(elem%Np)
94 real(RP) :: lglPts1D(elem%Np)
95 real(DP) :: intWeight_lgl1DPts(elem%Np)
97 real(RP) :: P1D_ori(elem%Np, elem%Np)
98 real(RP) :: DP1D_ori(elem%Np, elem%Np)
99 real(RP) :: DLagr1D(elem%Np, elem%Np)
100 real(RP) :: Emat(elem%Np, elem%Nfp*elem%Nfaces)
101 real(RP) :: MassEdge(elem%Nfp, elem%Nfp)
125 elem%Fmask(:,2) = elem%Np
129 elem%Dx1(:,:) = 0.0_rp
133 elem%x1(n) = lglpts1d(n)
137 elem%V(n,l) = p1d_ori(n,l) * sqrt(dble(l-1) + 0.5_rp)
138 elem%Dx1(n,l) = dlagr1d(l,n)
148 if (elem%IsLumpedMatrix())
then
149 elem%invM(:,:) = 0.0_rp
152 elem%M(i,i) = elem%IntWeight_lgl(i)
153 elem%invM(i,i) = 1.0_rp/elem%IntWeight_lgl(i)
168 massedge(:,:) = 0.0_rp
170 massedge(l,l) = 1.0_rp
172 emat(elem%Fmask(:,f), (f-1)*elem%Nfp+1:f*elem%Nfp) = massedge
178 end subroutine construct_element
181 function lineelement_gen_intgausslegendreintrpmat( this, IntrpPolyOrder, &
182 intw_intrp, x_intrp )
result(IntrpMat)
192 integer,
intent(in) :: IntrpPolyOrder
193 real(RP),
intent(out),
optional :: intw_intrp(IntrpPolyOrder)
194 real(RP),
intent(out),
optional :: x_intrp(IntrpPolyOrder)
195 real(RP) :: IntrpMat(IntrpPolyOrder,this%Np)
197 real(RP) :: r_int1D_i(IntrpPolyOrder)
198 real(RP) :: r_int1Dw_i(IntrpPolyOrder)
199 real(RP) :: P_int1D_ori(IntrpPolyOrder,this%PolyOrder+1)
200 real(RP) :: Vint(IntrpPolyOrder,this%PolyOrder+1)
209 do p1_=1, intrppolyorder
210 if (
present(intw_intrp)) intw_intrp(p1_) = r_int1dw_i(p1_)
211 if (
present(x_intrp)) x_intrp(p1_) = r_int1d_i(p1_)
213 vint(p1_,p1) = p_int1d_ori(p1_,p1) * sqrt(real(p1-1,kind=rp) + 0.5_rp)
216 intrpmat(:,:) = matmul(vint, this%invV)
219 end function lineelement_gen_intgausslegendreintrpmat
221end module scale_element_Line
module FElib / Element / Base
subroutine, public elementbase_construct_massmat(v, np, massmat, invmassmat)
Construct mass matrix M^-1 = V V^T M = ( M^-1 )^-1.
subroutine, public elementbase_construct_stiffmat(massmat, invmassmat, dmat, np, stiffmat)
Construct stiffness matrix StiffMat_i = M^-1 ( M D_xi )^T.
subroutine, public elementbase_construct_liftmat(invm, emat, np, nfptot, liftmat)
Construct stiffness matrix StiffMat_i = M^-1 ( M D_xi )^T.
subroutine, public elementbase1d_init(elem, lumpedmat_flag)
subroutine, public elementbase1d_final(elem)
module FElib / Element / line
subroutine lineelement_init(elem, elemorder, lumpedmassmatflag)
module common / Linear algebra
real(rp) function, dimension(size(a, 1), size(a, 2)), public linalgebra_inv(a)
module common / Polynominal
real(rp) function, dimension(nord), public polynominal_gengausslegendreptintweight(nord)
A function to calcuate the Gauss-Legendre weights.
real(rp) function, dimension(nord), public polynominal_gengausslegendrept(nord)
A function to calcuate the Gauss-Legendre points.
real(rp) function, dimension(size(x), nord+1), public polynominal_genlagrangepoly(nord, x_lgl, x)
A function to obtain the values of Lagrange basis functions which are evaluated over aribitary points...
real(rp) function, dimension(nord+1), public polynominal_gengausslobattopt(nord)
A function to calcuate the Legendre-Gauss-Lobtatto (LGL) points.
real(rp) function, dimension(size(x), nord+1), public polynominal_genlegendrepoly(nord, x)
A function to obtain the values of Legendre polynominals which are evaluated at aribitary points.
real(rp) function, dimension(size(x), nord+1), public polynominal_gendlegendrepoly(nord, x, p)
A function to obtain differential values of Legendre polynominals which are evaluated at aribitary po...
real(rp) function, dimension(nord+1), public polynominal_gengausslobattoptintweight(nord)
A function to calcuate the Gauss-Lobbato weights.
real(rp) function, dimension(nord+1, nord+1), public polynominal_gendlagrangepoly_lglpt(nord, x_lgl)
A function to obtain the differential values of Lagrange basis functions which are evaluated over ari...