14#include "scaleFElib.h"
38 real(rp),
allocatable :: v(:,:)
39 real(rp),
allocatable :: hj(:)
40 real(rp),
allocatable :: g(:)
41 real(rp),
allocatable :: r(:,:)
42 real(rp),
allocatable :: co(:)
43 real(rp),
allocatable :: si(:)
44 real(rp),
allocatable :: y(:)
47 procedure,
public :: iterate_pre => gmres_iterate_pre
48 procedure,
public :: iterate_step_j => gmres_iterate_step_j
49 procedure,
public :: iterate_post => gmres_iterate_post
50 procedure,
public :: final => gmres_final
81 class(
gmres),
intent(inout) :: this
82 integer,
intent(in) :: N
83 integer,
intent(in) :: m
84 real(RP),
intent(in) :: eps
85 real(RP),
intent(in) :: eps0
94 allocate( this%v(n,m+1) )
95 allocate( this%hj(m+1) )
96 allocate( this%g(m+1) )
97 allocate( this%r(m+1,m) )
98 allocate( this%co(m), this%si(m) )
105subroutine gmres_iterate_pre( this, b, w0, is_converged )
107 class(
gmres),
intent(inout) :: this
108 real(RP),
intent(in) :: b(this%N)
109 real(RP),
intent(in) :: w0(this%N)
110 logical,
intent(out) :: is_converged
117 this%v(i,1) = b(i) - w0(i)
118 this%g(1) = this%g(1) + this%v(i,1)**2
120 this%g(1) = sqrt(this%g(1))
122 if ( this%g(1) < this%EPS0 * this%N )
then
123 is_converged = .true.
126 is_converged = .false.
130 this%v(i,1) = this%v(i,1) / this%g(1)
133 this%m_out = min(this%m, this%N)
135end subroutine gmres_iterate_pre
138subroutine gmres_iterate_step_j( this, j, wj, is_converged )
140 class(
gmres),
intent(inout) :: this
141 integer,
intent(in) :: j
142 real(RP),
intent(inout) :: wj(this%N)
143 logical,
intent(out) :: is_converged
146 real(RP) :: tmp1, tmp2
150 this%hj(i) = sum( wj(:) * this%v(:,i) )
151 wj(:) = wj(:) - this%hj(i) * this%v(:,i)
153 this%hj(j+1) = sqrt( sum(wj(:)**2) )
160 this%v(:,j+1) = wj(:) / this%hj(j+1)
163 this%r(1,j) = this%hj(1)
165 tmp1 = this%co(i) * this%r(i,j) + this%si(i) * this%hj(i+1)
166 tmp2 = - this%si(i) * this%r(i,j) + this%co(i) * this%hj(i+1)
171 tmp1 = 1.0_rp / sqrt(this%r(j,j)**2 + this%hj(j+1)**2)
172 this%co(j) = tmp1 * this%r(j,j)
173 this%si(j) = tmp1 * this%hj(j+1)
175 this%g(j+1) = - this%si(j) * this%g(j)
176 this%g(j) = this%co(j) * this%g(j)
178 this%r(j,j) = this%co(j) * this%r(j,j) + this%si(j) * this%hj(j+1)
179 this%r(j+1,j) = 0.0_rp
181 if ( abs(this%g(j+1)) < this%EPS )
then
183 is_converged = .true.
185 is_converged = .false.
189end subroutine gmres_iterate_step_j
192subroutine gmres_iterate_post( this, x )
194 class(
gmres),
intent(inout) :: this
195 real(RP),
intent(inout) :: x(this%N)
200 do j=this%m_out, 1, -1
201 this%y(j) = this%g(j)
203 this%y(j) = this%y(j) - this%r(j,i) * this%y(i)
205 this%y(j) = this%y(j) / this%r(j,j)
208 x(:) = x(:) + matmul(this%v(:,1:this%m_out), this%y(1:this%m_out))
211end subroutine gmres_iterate_post
213subroutine gmres_final( this )
215 class(
gmres),
intent(inout) :: this
218 if (
allocated(this%v) )
then
220 deallocate( this%hj )
223 deallocate( this%co, this%si )
228end subroutine gmres_final
subroutine gmres_init(this, n, m, eps, eps0)