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Regional climate projections inevitably inherit uncertainties from general circula-
tion models (GCMs). We therefore propose a new approach for identifying the
dominant uncertainties. This approach employs the downscaling procedure by Ada-
chi et al. to the uncertainty problem using multiple GCM projections. The mean
state of the large-scale atmospheric states and the deviation from this mean state
are the two uncertainty factors considered here, which are provided by a GCM.
These two factors are referred to as climatology and perturbation components,
respectively. To demonstrate the effectiveness in identifying these uncertainty fac-
tors using the proposed approach, a regional projection of summertime climate in
western Japan is conducted using four different future climate data that are calcu-
lated using an atmospheric GCM with different sea surface temperatures. Results
show that the variability in surface air temperature projections is reasonably
derived from the climatology uncertainty, whereas the variability in precipitation
projections is equally influenced by the climatology and perturbation uncertainties.
Both the climatology and perturbation uncertainties should therefore be considered
when analysing regional climate projections.
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1 | INTRODUCTION

It is important to elucidate uncertainties that persist in
regional climate projections when designing adaptation plans
to anticipate future climate change. The sources of uncer-
tainty in future climate projections are primarily divided into
three categories (Hawkins and Sutton, 2009, 2011): internal
variability, the greenhouse gas emission scenario and imper-
fections in general circulation models (GCMs). Uncertainty
related to internal variability is present in the projections
regardless of global warming and its influence decreases rel-
ative to climate change signal due to global warming when

longer prediction lead times are considered. Differences in
the greenhouse gas emissions affect the radiative balance of
the atmosphere. Uncertainties due to GCM imperfections
occur because GCMs generally exhibit different climate sen-
sitivities to certain external forces (e.g., greenhouse gases)
and exhibit different spatial patterns in the atmospheric fields
even if the global climate sensitivities are of the same
degree. Uncertainties due to imperfections in regional cli-
mate models (RCMs) should also be considered in regional
climate projections that employ downscaling simulations
(Wilby and Dessai, 2010) because they can show different
downscaled climates even if the RCMs use the same
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boundary conditions and similar model configurations
(e.g., domain and grid spacing).

Regional-scale comparisons of these uncertainties have
been performed using multi-GCMs (e.g., Giorgi and Fran-
cisco, 2000; Hawkins and Sutton, 2011), multi-RCMs
(e.g., Ishizaki et al., 2012), multi-GCM/RCM combinations
(e.g., van der van der Linden and Mitchell, 2009; Inatsu
et al., 2015; Sørland et al., 2018) and a large number of
ensemble simulations (Mizuta et al., 2017). Hawkins and
Sutton (2011) analysed multiple GCM projections and
showed that the GCM model uncertainty was larger than the
scenario uncertainty for both global and regional precipita-
tion projections, except for the polar regions, at the end of
21st century. Inatsu et al. (2015) performed multi-model
downscaling experiments with three GCMs and three RCMs
and subsequently compared the uncertainty contributions
derived from GCMs and RCMs to a regional climate projec-
tion. They showed that the downscaling results primarily
depended on the GCM boundary conditions. A well-
developed RCM for a target region has the advantages of
reducing GCM climate biases and quantitatively modifying
the GCM climate-change signals (Sørland et al., 2018);
however, an RCM still qualitatively inherits the tendency of
the climate change signals projected by a GCM
(e.g., Rowell, 2006; Déqué et al., 2007). This study focuses
on the uncertainties due to GCM projections in regional cli-
mate projections since GCM projection differences are one
of the factors that lead to variations in regional climate
projections.

Adachi et al. (2017) (henceforth, A2017) proposed a
new downscaling procedure to quantitatively evaluate the
contributions of three factors to regional climate change.
A2017 basically used the same mathematical approach as
the “factor separation method” proposed by Stein and Alpert
(1993) and extended this approach to study regional climate
projections. The three factors are the changes in two large-
scale atmospheric components provided by a GCM, the cli-
matology (mean state) and perturbation (deviation from the
mean) components and the nonlinear effects between these
two component changes. The thermodynamic and dynamic

effects of these two component changes on regional climate
are explained in A2017 and summarised in Table 1.

Here, we propose a new method for evaluating the
uncertainties derived from GCM projections when assessing
regional-scale projections. Specifically, we apply the proce-
dure of A2017 to multiple GCM projections and evaluate
how each of the three factors influences the variability in
regional climate projections. Section 2 briefly introduces the
concept and procedure of A2017 and then describes the
experimental design of this study, along with the GCM cli-
mate data and the RCM employed here. The proposed
method is then applied to summertime climate projections in
western Japan (Section 3), with focus on surface air tempera-
ture and precipitation. Section 4 provides a summary and
discussion of our results.

2 | METHODS

2.1 | Description of the principal concept and
procedure

This subsection briefly introduces the procedure proposed
by A2017, which is summarised in Figure 1a. Here we con-
sider the changes in the large-scale atmospheric state
between the present (p) and future (f ) climates. We express
p, which is provided by a GCM, as the sum of two compo-
nents: the temporally averaged component, hpi, and its devi-
ation, p

0
such that p = hpi + p

0
. We refer to the former and

latter components as the climatology and perturbation com-
ponents, respectively, following A2017. We similarly
express f as f = hfi + f

0
. These large-scale climate states are

shown as diamonds on the climatology–perturbation phase
space in Figure 1a, according to A2017 and Nishizawa et al.
(2018), and they are used as RCM boundary conditions in
our analysis. The vertical axis indicates the changes in a
regional climate target variable that are estimated from
downscaling experiments.

The regional climate change, Δ, is estimated from two
direct dynamical downscaling (DDS) experiments, which
are labelled PDDS (present DDS) and FDDS (future DDS)
in Figure 1a. The boundary conditions for the DDS experi-
ments are taken directly from the GCM output, with p for
PDDS and f for FDDS.

Two additional downscaling experiments are conducted
to extract the contributions of climatology and perturbation
changes to regional climate, the pseudo climatology change
downscaling (Pseudo-Clim-DS) and pseudo perturbation
change downscaling (Pseudo-Perturb-DS) experiments. The
boundary conditions for these experiments are prepared by
altering either the climatology or perturbation component,
where hfi + p

0
for the Pseudo-Clim-DS experiment and

hpi + f
0
for the Pseudo-Perturb-DS experiment. The differ-

ence between the Pseudo-Clim-DS and PDDS experiments
corresponds to the regional climate change due to

TABLE 1 Examples and meanings of the climatology and perturbation
changes from the viewpoints of thermodynamic and dynamic changes

Thermodynamic change Dynamic change

Climatology
change

Increase in atmospheric
moisture content due to
warming temperatures
(Clausius–Clapeyron
relationship)

Changes in large-scale flow
patterns associated with
global circulation
(e.g., width of the Hadley
cell, position and strength
of jets)

Perturbation
change

Changes in temperature and
specific humidity in the
surrounding areas of a
disturbance due to
changes in the track of
the disturbance

Changes in the frequency,
intensity and track of the
disturbances, such as
tropical and extratropical
cyclones
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climatology changes (ΔC), whereas that between the
Pseudo-Perturb-DS and PDDS experiments corresponds to
the regional climate change due to perturbation
changes (ΔP).

We refer to the total regional climate change Δ as the
actual climate change, with the sum of ΔC and ΔP repre-
senting the expected climate change. Therefore, the differ-
ence between the actual and expected climate changes
corresponds to the nonlinear effect Δcp between ΔC and
ΔP. This procedure allows us to estimate the total regional
climate change between the two large-scale states, and then
evaluate the contributions of these three factors on the total
regional climate change: Δ = ΔC + ΔP + Δcp.

2.2 | Experimental design for uncertainty evaluation

Here we apply the above procedure to evaluate the uncer-
tainties derived from the boundary conditions. Although it is
desirable to investigate the uncertainties using as many
GCM projections as possible, it is not easy to obtain GCM
outputs with the required temporal resolution for an RCM
boundary condition. We therefore utilise one present climate
and four future climate data from a single GCM for our
uncertainty analysis. The details of these climate datasets
and the GCM are described in following subsection.

When N sets of present and future climate datasets are
available, 4 N large-scale atmospheric states can be con-
structed. If a reference climate (i.e., present climate) is com-
mon for N future climates, 3 N + 1 large-scale atmospheric

states are constructed. Since one present and four future cli-
mate datasets are available in this study, we perform
13 downscaling experiments for our uncertainty analysis:
one present climate DDS (reference state, PDDS), four
future climate DDS (FDDS), four Pseudo-Clim-DS and four
Pseudo-Perturb-DS experiments (Table 2). A conceptual dia-
gram of the relationship between the boundary conditions
for the 13 experiments is illustrated in Figure 1b.

Perturbation

<f><p>

p′
PDDS

Climatology

FDDS

Pseudo-
Perturb-DS

Pseudo-Clim-DS

Δcp
Variable

Actual climate of f
Expected climate of f

<p>

p′

Colors
PDDS
FDDS_n
Pseudo-Clim-DS_n
Pseudo-Perturb-DS_n

Marks
: p (Present)
: fn (Future)
n=0~3

<f1>

f2′

(a) (b)

Perturbation

Climatology

<f0>
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<f3>

f1′
f3′
f0′

f′
ΔP+ΔC Δ

ΔP
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FIGURE 1 Schematics of the (a) basic downscaling procedure and (b) boundary condition relationships among the downscaling experiments conducted in
this study. The subscript n (n = 0 � 3) uniquely identifies the future climate projections, which are calculated using MRI-AGCM3.2S with different SSTs.
The experiments are the same as those described in Table 2. Note that the subscripts that identify the future climate projections are omitted in (a) because
(a) illustrates the basic concept of the procedure proposed by A2017

TABLE 2 Experimental design for estimating the contributions of the
changes in the climatology and perturbation components, and their
nonlinearity to the variability in regional climate changes. DDS stands for
direct dynamical downscaling. h i and 0

indicate the climatology and
perturbation components, respectively, of the large-scale boundary
condition. p and f represent the present and future climate data, respectively,
which are provided by MRI-AGCM3.2S. The subscript n (n = 0 � 3)
uniquely identifies the future climate projections, which are calculated using
different SSTs

Run name Description of experiment
Boundary
condition

PDDS Present climate experiment via
the DDS method

hpi + p
0

FDDS_n Future climate experiment via the
DDS method for future
climate fn

hfni + fn
0

Pseudo-Clim-DS_n Pseudo climatology change
downscaling experiment for
future climate fn

hfni + p
0

Pseudo-Perturb-DS_n Pseudo perturbation change
downscaling experiment for
future climate fn

hpi + fn
0
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If we consider two DDSs (one PDDS and one FDDS),
one Pseudo-Clim-DS and one Pseudo-Perturb-DS as a set of
downscaling experiments, then N sets of experiments pro-
vide N sets of regional climate change information for Δ,
ΔC, ΔP and Δcp. The difference between the estimated Δ
values corresponds to the uncertainty in the regional climate
projections estimated from multiple GCM projections. The
variability among the estimated Δ values is broken into the
variabilities derived from the climatology and perturbation
components, which are estimated from the differences
between the ΔC and ΔP values, respectively.

2.3 | Description of the GCM climate data and RCM
model settings

Our method was applied to the changes in summertime precip-
itation and surface air temperature in western Japan to demon-
strate its effectiveness in uncertainty evaluation. The climate
data used as the RCM boundary conditions were provided by
MRI-AGCM3.2S (Mizuta et al., 2012), which is an atmo-
spheric GCM. The present climate was simulated using a Had-
ley Centre Sea Ice and Sea Surface Temperature (SST) dataset
(HadISST) (Rayner et al., 2003) as forcing data. The four
future climates were estimated using four different SSTs. The
SST data for the future climates were constructed by summing
the fluctuation, trend and climatological mean, and the clima-
tological mean was further divided into the present climate
and its future change (Mizuta et al., 2008). The fluctuation
was obtained from the HadISST dataset, which is the same as
that for the present climate. The trend and future change of the
climatological mean are obtained from the (a) multi-model
mean of 28 coupled GCMs (CGCMs) under the RCP8.5 sce-
nario, which are provided by the Coupled Model Intercompar-
ison Project Phase 5 (CMIP5) (Taylor et al., 2012), and
(b) multi-model means for three model groups, classified using
a cluster analysis of the dominant SST patterns among the

28 CGCMs (Mizuta et al., 2014). Here, the future climate
data, which are projected using the mean SST of the
28 CGCMs, are defined as f0, whereas the others are labelled
as f1, f2 and f3. The present climate data are expressed as p.

The boundary conditions for the downscaling experiments
are prepared using combinations of the climatology and per-
turbation components from the present and future climate
datasets provided by MRI-AGCM3.2S, as shown in Table 2.
Note that the specific humidity in the Pseudo-Clim-DS and
Pseudo-Perturb-DS experiments is determined by the relative
humidity in the present and future climates, respectively,
where the relative humidity is assumed to be dependent on the
perturbation component of each experimental climate. There-
fore, the specific humidity for these experiments is calculated
from the temperature, which is derived from the combination
of the two components, and the relative humidity in the cli-
mate providing the perturbation component.

What does our investigation of the variability in down-
scaled climates due to differences in the climatology and per-
turbation changes mean? The difference in the experimental
settings between the four MRI-AGCM3.2S future climate
projections is the only forcing dataset on the SSTs. Our analy-
sis therefore focuses on the regional climate projection uncer-
tainties due to the GCM imperfections, which are recognised
through the resultant SST patterns in the CMIP5 models.

The Scalable Computing for Advanced Library and
Environment-Regional model (SCALE-RM) (Nishizawa
et al., 2015; Sato et al., 2015; Yoshida et al., 2017) was used
to perform the downscaling experiments listed in Table 2,
with the calculation domains shown in Figure 2a. The inner
and outer domains are modelled using 2.5- and 7.5-km-grid
intervals, respectively. The results from the inner domain,
excluding lateral boundary nudging region, were used for the
analysis. The physical schemes that are used in the experi-
ments are listed in Table S1 of Appendix S1, Supporting
Information. The calculation periods extend from June to

[m] [mm/day] [˚C]
200 500 1000

2 4 6 8 10 12 14 16 18 19 20 21 22 23 24

(a) (b) (c)Model domains Precipitation Surface air temperature

FIGURE 2 (a) Calculation domains and model topography, and PDDS distributions of the 25-year means of (b) precipitation and (c) surface air temperature
at 2 m. The solid lines in (a) outline the entire calculation domains, with the dashed lines indicating the inner regions with no lateral boundary nudging region.
The results in the inner region of the second domain are used for the analyses
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September 1979–2003 for the present climate and from June
to September 2075–2099 for the future climates. The
4-month downscaling simulation for each year is divided
into 31 runs, with a run conducted every 4 days. The integra-
tion time of one run is 5 days, which includes 1 day for
model spin-up. The PDDS precipitation and surface air tem-
perature climatology is shown in Figure 2b,c, respectively.
Their correlation coefficients are 0.85 and 0.92 for precipita-
tion and temperature, respectively, based on 705 and
459 observation stations in the target region, respectively.
The high degree of correlation between the observations and
present climate model results indicates the sufficient model
performance to demonstrate the proof-of-concept for evaluat-
ing the uncertainties in future regional climate projections.

3 | RESULTS

The predicted future changes (Δ) between the PDDS and
four FDDS experiments are shown in Figure 3. We use three

indices of the surface air temperature at 2 m (T2) for the
analysis: mean temperature, daily maximum temperature and
number of tropical-night days as well as three precipitation
indices: mean precipitation, maximum 1-day precipitation
and maximum number of consecutive dry days. A tropical-
night day is defined as a day when the daily minimum T2
≥20�C, and a dry day is defined as a day when the daily pre-
cipitation <1 mm/day. All the indices are calculated in each
year, and then temporally averaged over the 25-year period
and spatially averaged across the analysis domain.

All the FDDS experiments indicate that the mean and
daily maximum temperatures increase by 3.5–4.0�C in the
future climates (Figure 3a,b). The number of tropical-night
days also increases by 20 days per year (Figure 3c). The
common trend among the three temperature indices is that
the difference between the four projections, which is shown
as |Max-Min| in each panel, is smaller than the future change
in each instance. However, the precipitation results differ
from the T2 results. The mean precipitation is projected to
decrease in each future climate (Figure 3d), whereas each
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FIGURE 3 Differences between the PDDS and four FDDS precipitation and surface air temperature indices: 25-year-means of (a) surface air temperature,
(b) daily maximum temperature, (c) tropical-night days, (d) daily precipitation, (e) maximum 1-day precipitation and (f) maximum consecutive dry days. A
tropical-night day is a day when the daily minimum surface air temperature ≥20�C, and a dry day is a day when the daily precipitation <1 mm/day. The
asterisks after the experimental name indicate that the difference is statistically significant within the 95% confidence level. The “mean” in the panels indicates
the mean value of the four projections, whereas “|Max-Min|” indicates the difference between the maximum and minimum values among the four projections
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projection shows an increase in the maximum 1-day precipi-
tation. The common trend among the two precipitation indi-
ces is that the spread of the four downscaled projections,
shown as |Max-Min|, is larger than the absolute value of
mean future change. Each future climate predicts an increase
in consecutive dry days, with the spread of the four projec-
tions being smaller than the mean future change. These
results imply that a single regional climate projection is
insufficient to yield a statistically reliable projection, espe-
cially for precipitation, as suggested in previous studies
(e.g., Rowell, 2006; Déqué et al., 2007).

The contributions of each component in a large-scale
atmospheric state to the variability in future climate changes
are shown in Figure 4. Each mark in Figure 4 corresponds to
its respective future projection in Figure 1b, with the excep-
tion that results are shown as the differences from the PDDS
experiment (Δ, ΔP and ΔC). Each bar represents the mean
of the four downscaling experiments. The Δ values (red
symbols) are a condensed representation of the Figure 3
results.

The results for the three temperature indices (Figures 4a–
c) show that Δ is primarily influenced by ΔC. The spread in
the four Δ values of the mean and daily maximum tempera-
ture indices is also influenced by the variability in ΔC
because the variance in ΔC is larger than that in ΔP. The
variabilities in ΔC and ΔP are within the same range for the
tropical-night days. These results show that the difference in

climatology projected by a GCM has a larger influence than
the difference in perturbation on the downscaled temperature
change and its variability in the climate projections.

The precipitation results show a completely different
trend compared to the temperature results. The decrease in
mean precipitation (Δ) is primarily explained by the precipi-
tation decrease due to the perturbation changes (ΔP) in the
four experiments. ΔP and ΔC exhibit the same degree of
spread, and therefore equally influence the variability in Δ
for mean precipitation. The spread in Δcp is smaller than
that in the other two factors, but it is not negligible. The pre-
cipitation increase due to ΔC is generally larger than that
due to ΔP for the maximum 1-day precipitation, yielding a
projected increase in Δ. As with mean precipitation, both
ΔP and ΔC provide similar contributions to the variability in
Δ for the maximum 1-day precipitation, and Δcp is not neg-
ligible. The influence of ΔP and its variability is large com-
pared to that of ΔC for the consecutive dry days, with the
spread in Δ primarily due to the difference in ΔP. Our
results therefore show that the main factor controlling future
regional climate and its variability is not always the climatol-
ogy of a GCM, as perturbation differences can also exert a
strong influence on regional climate projections.

All four FDDS simulations yield a decrease in mean pre-
cipitation, which is primarily attributed to ΔP. A2017
explained the negative ΔP in mean precipitation for the
Pseudo-Perturb-DS_0 experiment as a drastic decrease in
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contribution of the nonlinear effect between the two component changes. The evaluation indices with asterisks indicate that the variance of ΔC is larger than
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precipitation associated with typhoons. Here, we apply the
same analysis to other cases and observe that the changes in
precipitation associated with typhoons account for more than
60% of ΔP for all the Pseudo-Perturb-DS experiments. To
determine the reason for the changes in ΔP that are associ-
ated with typhoons, we analysed the results from the view-
point of the changes in event frequency and precipitation
intensity of an event. We assumed that the precipitation (R)
can be decomposed into the number of events (E) and mean
precipitation intensity (I) of an event, where R = E × I.
Here we note that “precipitation intensity” is not an exact
representation of the cyclone intensity but rather its impact
on the target area. Given that R = E × I and R

0
= E

0
× I

0
=

(E + ΔE)(I + ΔI) for the PDDS and Pseudo-Perturb-DS
experiments, respectively, the precipitation change (ΔR =
R − R

0
) can be approximated as ΔR � ΔE × I + E × ΔI,

where ΔE × I and E × ΔI represent the influences due to the
changes in the number of events and the changes in the pre-
cipitation intensity, respectively. We find that the primary
factor for the changes in ΔP is due to the changes in the
number of typhoons, that is, ΔE × I of typhoons. On the
other hand, the increase in mean precipitation due to ΔC is
determined by the balance between the increase in precipita-
tion associated with typhoons and non-typhoon cyclones,
and the decrease in precipitation associated with other rain
events. The former can be explained by rich moisture in the
atmosphere due to soaring temperatures under the assump-
tion of the same relative humidity, with the latter explained
by the stabilisation of the atmosphere in the future climate.

4 | CONCLUSIONS AND DISCUSSION

We propose a new method to evaluate the uncertainties
derived from GCM boundary conditions in regional climate
projections by extending the procedure introduced by
A2017. We consider the climatology and perturbation differ-
ences of the GCM projections as uncertainty sources. Our
results show that the primary factor that influences the
spread of future climate projections is the climatology com-
ponent for surface air temperature indices, whereas it is the
perturbation component for the consecutive dry days. For
the mean and maximum 1-day precipitation indices, both the
climatology and perturbation components are equally impor-
tant factors. Improving the reliability of both the climatology
and perturbation responses in a GCM is important for
obtaining more accurate projections of regional climate
change, especially for quantities with large nonlinearities
such as precipitation. Therefore, considering both climatol-
ogy and perturbation uncertainties on large-scale future cli-
mate projections are necessary when assessing future
regional climate.

GCMs generally comprise different numerical schemes,
especially for physical processes, and exhibit different
responses to certain external forcings. Because the

demonstration in this study used climate data produced by a
single GCM, many experimental conditions are common
among the four future climates such as the modelled climate
response, model schemes, greenhouse gases and ground sur-
face condition. We therefore consider our estimated variability
in the downscaled climate projections to represent only a
portion of those estimated using multiple climate projections
from multiple GCMs. The proposed method needs to be
applied to multiple future climate projections from different
GCMs to properly assess the influences of these two compo-
nents. Such results would improve our understanding of the
uncertainties derived from GCM projections for the regional
climate projections of a target region and provide valuable
information on the regional climate itself.
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